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Summary. Some model membranes and biological membranes behave as if ion 
permeation were controlled by fixed neutral sites, i.e., by groups that are polar but lack 
net charge. By solving the boundary conditions and Nernst-Planck flux equations, this 
paper derives the expected properties of four types of membranes with fixed neutral 
sites: model 1, a membrane thick enough that microscopic electroneutrality is obeyed; 
model 2, same as model 1 but with a free-solution shunt in parallel; model 3, a membrane 
thin enough that microscopic electroneutrality is violated; and model 4, same as model 3 
but with a free-solution shunt in parallel. The conductance-concentration relation and 
the current-voltage relation in symmetrical solutions are approximately linear for all 
four models. Partial ionic conductances are independent of each other for a thin mem- 
brane but not for a thick membrane. Sets of permeability ratios derived from conductan- 
ces, dilution potentials, or biionic potentials agree with each other in a thin membrane 
but not in a thick membrane. The current-voltage relation in asymmetrical single-salt 
solutions is linear for a thick membrane but nonlinear for a thin membrane. Examples 
of potential and concentration profiles in a thin membrane are calculated to illustrate 
the meaning of space charge and the electroneutrality condition. The experimentally 
determined properties (by A. Cass, A. Finkelstein & V. Krespi) of thin lipid membranes 
containing "pores" of the anion-selective antibiotic nystatin are in reasonable agree- 
ment with model 3. Tests are suggested for deciding if a membrane of unknown structure 
has neutral sites, whether it is thick or thin, and whether the sites are fixed or mobile. 

The  bes t -known artificial membranes  exhibiting permeabi l i ty  differences 

between cations and anions or  among  ions of the same sign, and  hence 

provid ing  possible models  fo r  the selective permeabil i ty  of biological  mem-  

branes,  are ion-exchangers.  These conta in  ionized sites with net  charge, 

such as - C O O -  or  - N H ~ ,  conf ined  within the m em b ran e  and balanced 

electrically by  mobile  ions of opposi te  sign f ro m  the bath ing solution. 

Famil iar  examples of ion-exchange membranes  include glass electrodes, 

col lodion membranes ,  and  l iquid ion exchangers.  M u c h  of the l i terature on  

ion exchangers has been admirably  summar ized  in a review by TeoreU 

(1953) and in papers  by  Eisenman (1962; Confi  & Eisenman,  1965, 1966). 
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Fig. 1. Examples of neutral membranes which are ion-selective because of fixed pola 
sites. Left: a channel through the membrane is lined by carbonyl groups, oriented s~ 
that the oxygen (negative) ends of the dipoles point towards the center of the channel 
Since ion migration takes place in a predominantly negative immediate environment 
cations have lower standard chemical potentials, and possibly higher mobilities, in th, 
membrane than do anions, and the membrane is cation-selective. Right: a channe 
through the membrane is lined by hydroxyl groups, oriented so that the hydrogei 
(positive) ends of the dipoles point towards the center of the channel. Since ion migratio~ 
takes place in a predominantly positive immediate environment, anions have lowe: 
standard chemical potentials, and possibly higher mobilities, in the membrane than dc 

cations, and the membrane is anion-selective 

More recently, marked ion selectivity has also been observed in so-calico 
neutral membranes, i.e., ones lacking sites with net charge. The sites con. 
trolling ion permeation in these membranes prove to be multipolar (specifi. 

cally, dipolar) groups, such as the carbonyl (6 +--~C = 0  6 - ) ,  ether linkage 

/ \ O  8 - or hydroxyl (8 - - -O- -H ~ +). Selectivity arises frorr 
b + \ C  / , / \  

the fact that the change in standard chemical potential A ~o from water tc 
the membrane (i. e., "solubili ty" in the membrane) may be very differenl 

for cations and anions, if the structure of the membrane compels permeatin~ 
ions to be nearer one end of the polar groups than the other (see Fig. 1). 
In addition, if ions permeate as independent entities rather than bein~ 
associated with a molecule bearing polar groups and acting as a carrier 
cations and anions might have different mobilities, depending on whethel 
their immediate environment is predominantly positive or negative. The 
principles governing discrimination among ions of like sign are essentially 
the same whether the nearest neighbors of permeating ions bear an ionic 
charge or a partial charge (Diamond & Wright, 1969, pp. 60%608; Eisen- 
man, 1969, pp. 32-36). However, the forms of several of the relations 
between ion fluxes and external driving forces differ between ion exchangers 
and neutral membranes because of the electroneutrality condition. Examples 
of model membranes with mobile neutral sites include thin lipid mem- 
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branes containing carriers such as monactin, valinomycin, and cyclic 
polyethers (Pressman, 1968; Tosteson, 1968; Eisenman, Ciani & Szabo, 
1968; Szabo, Eisenman & Ciani, 1969; McLaughlin, Szabo, Eisenman & 
Ciani, 1970a), whereas thin lipid membranes containing nystatin "pores" 
exemplify fixed neutral sites (Finkelstein & Cass, 1968; Cass, Finkelstein & 
Krespi, 1970). As for possible biological instances, "black-box" experiments 
suggest that cation permeation in barnacle muscle is controlled by either 
fixed or mobile neutral sites (Hagiwara, Toyama & Hayashi, 1971), whereas 
the following papers (Wright, Barry & Diamond, 1971-referred to as 
paper III - a n d  Barry, Diamond & Wright, 1971 -referred to as paper IV) 
present evidence that cation permeation in gallbladder and perhaps in 
other epithelia is controlled by fixed neutral sites. 

A theoretical treatment of ion permeation in thin membranes with mobile 
neutral sites under conditions of zero net current was given by Ciani, 
Eisenman and Szabo (1969). The present paper derives the current-voltage 
relation, the conductance-concentration relation, and the voltage: concen- 
tration-gradient relation for membranes with fixed neutral sites. We con- 
sider separately the cases of membranes which are thick enough that mi- 
croscopic electroneutrality is obeyed, and membranes which are thin com- 
pared to the Debye length and in which microscopic electroneutrality may 
therefore be violated. (The meaning of microscopic electroneutrality is 
discussed in more detail on pp. 310-319.) In addition, we consider the case, 
for both a thick membrane and a thin membrane, of a fixed neutral-site 
channel in parallel with a free-solution shunt. This case may approximate 
the real situation in some biological experiments, where a shunt may develop 
in parallel with the native membrane and thus alter measured properties. 
However, the theoretical treatment offers the possibility of extracting the 
properties of the native membrane from measured properties of the whole 
system. Our theory is compared with the experimental studies of Cass et al. 

(1970) on a model membrane containing nystatin pores on pp. 324--325, 
and with our experimental results on the gallbladder in a subsequent paper 
(paper IV). Finally, we suggest in the Discussion how to decide if the 
mechanism of ion permeation in a biological membrane of unknown 
structure is controlled by fixed neutral sites. 

Model 1. Thick Membrane Without Shunt 

We consider a membrane lying in a plane perpendicular to the x axis 
and extending from x = 0  to x = d .  The aqueous solutions adjacent to the 
membrane-solution interfaces at x = 0  and x = d  are indicated by super- 

21" 



298 P.H. Barry and J. M. Diamond: 

scripts ' and ", respectively. We symbolize concentrations by C, activitie 
by a, activity coefficients by 7, fluxes by J, electrical potentials by r am 
mobilities by u. The standard chemical potential of the i th ion in water am 
in the membrane is written as #0 (w) and #o (m), respectively. Consideratiol 
is restricted to the case of two univalent cations, symbolized by subscripts i 
and 2, and one univalent anion, symbolized by subscript 3. 

The two principal assumptions are as follows. 

(a) The membrane contains fixed, neutral (lacking net charge), pola~ 
sites, such that the change in #o between the membrane and an aqueou~ 
solution is unequal for cations and anions. 

(b) The membrane is thick enough that microscopic electroneutralit3 
must be obeyed throughout it (for discussion, s e e  pp. 310-319). Since the 
membrane lacks charged sites, the concentration of mobile cations musl 
equal the concentration of mobile anions at a given point in the membrane. 

We further assume the following conditions. 

(c) There is perfect stirring on either side of the membrane, such thal 
the bathing solutions have the composition of bulk solution right up tc 
within a few Debye lengths of the membrane-solution interface, and un- 
stirred-layer effects such as the transport-number effect (Barry & Hope, 
1969a, b; Wedner & Diamond, 1969) and altered boundary-layer con- 
centrations owing to permeation can be neglected. 

(d) The relation between the activity at and the concentration C~ of the 
i th ion inside the membrane is assumed to be of the form 

a, = V C~ (1) 

where n is the so-called non-ideal activity factor and can have a value other 
than 1. This expression has been found empirically to hold for a variety 
of artificial systems (Eisenman, 1962; Garrels & Christ, 1965; Doremus, 
1969). The physical significance of n is discussed in paper IV. 

(e) #o, ~, and u for each ion, and n, are assumed uniform through the 
membrane. 

(f) ~ is assumed to be the same for all ions present, a generalized Gug- 
genheim assumption (Barry & Diamond, 1970, p. 104). 

(g) The electrochemical potential # is assumed continuous across the 
membrane-solution interface; i.e., the interfacial resistance is negligible. 

The total membrane potential, E, is related to the applied voltage across 
the membrane, E*, and the voltage for zero current across the membrane, 
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Eo by 
E* + Eo = E. (2) 

E is the sum of two boundary potentials at the membrane-solution inter- 
faces (O"-qJ(d), O(0)-~O') plus the diffusion potential in the membrane 
interior (~O (d) - r (0)): 

E = ~O"-~k' = ~ " -  ~k(d) + ~ (d)-  @(0) + ~b(0)- ~b'. (3) 

The procedure is to solve the boundary conditions in order to obtain the 
two boundary potential terms, and then to solve for the membrane interior 
potential. 

To solve the boundary conditions, we begin by equating the electro- 
chemical potentials of ion i across the x =0 interface: 

#~ (w) + n R Tln(a' i ) l /"  + zi F ~b'= #~ (m)  + n R T l n  yX/" Ci(O) + zi F ~ (O) . (4) 

Rearranging, we obtain: 

Ci (0) = (a~ Ki/7)  1/, e - z~ F t~, ~o)- ~'~/, g~" (5) 

where the ion-site binding constant K, is defined by 

Ks = etU ~ (~)-u ~ (,,)]mT (6) 

Ks has the significance of the potential-independent part of a partition 
coefficient. At the x =d  interface, an identical expression is obtained for 
Ct(d), except that a'~ in Eq. (5) is replaced by a~'. 

By inserting Eq. (5) into the electroneutrality condition, 

one finds that 

and 

where 

Ct (0) + C 2 (0) = Ca (0), (7) 

C1 (0) = 0' (K1 a'l/y) ~1", (8 a) 

C2 (0) = 0' (K2 a'2/~) ~/", (8 b) 

Ca (0) = (Ka a'a/y)~/"/O ', (8 c) 

O'--e-Vtq '~O)-~"3/"RT=l/(K3 a'a)l/"/[(K1 a'x)a/"+(K2 a'2)1/"]. (9a) 

Expressions identical to Eqs. (8a)-(8c) hold for Cl(d), Cz(d), and Cs(d), 
r t I t  t t  except that 0', al, a2, and a~ are replaced by 0", al ,  a: ,  and a~', respectively, 

where 
O " - e - r t q ' ~ a ) - * " ] / " a r = ] / ( K 3 a ' a ' ) l / " / [ ( K 1 a ; ) l / " + ( K 2 a ' 2 ' ) l / " ]  ' . (9b) 
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This completes the solution of the boundary conditions [boundary poten 
tials, Eqs. (9a and b), boundary concentrations, Eqs. (8 a-8c)] in terms o 
standard chemical potentials and bathing solution concentrations. Substitut 
ing Eqs. (9a) and (9b) into Eq. (3) gives for the whole potential: 

n R T .  0" 
E-- 0 " -  0' = O (d)-  r (0) + - - ~  In 0'" (10 

We now solve as follows for the membrane interior potential O(d)- 
(0), assuming the validity of the Nernst-Einstein equation and the Nernst. 

Planck equation. 
The Nernst-Planck flux equation for the i th ion within the membran~ 

reads: 
Ji(x) = - u i C i ( x ) R T d l n a i ( x ) / d x - z i u ~ C i ( x ) F d ~ O ( x ) / d x  (111 

where zi is the valency. Substituting Eq. (1) [a~ = ? C~] into the first term or 
the right-hand side of Eq. (11): 

- ui Ci R T d In a~ ( x ) / d  x = 
- u i C i R T  d(7 C7) 

a~ d x  
- - -  - ui n R T d  C i ( x ) / d x .  (121 

The Nernst-Planck equations thus become: 

J1 (x) = - u 1 n R T d C 1 (x) /  d x - u 1 C 1 (x) F d ~ (x) /d  x ,  ( l  3 a; 

J2 (x) = - u 2 n R T d C a (x) /d  x - uz Ca (x)  F d ~ (x) /d  x ,  (13 b~ 

Ja (x) = - u a n R T d C 3 (x) /d  x + u 3 Ca (x) F d ~ (x) /  d x . (13 c I 

If one divides Eqs. (13a)-(13c) by ul, u2,  and ua, respectively, and adds 
them, remembering that C1 (x)+ Cz (x)= Ca (x) and hence that 

one obtains: 

dC~ + dC~ _ d C  3 

d x  d x  d x  " 

_ 2 n R T d C a ( x )  J1 t_Jz + J 3 _ j + .  04) 
d x  ul  u2 u3 

Since J+ is independent of x in the steady state, Eq. (14) may be inte- 
grated between x = 0 and x = d to give: 

c3 (x) = ca  ( 0 ) -  x J+/2 n RT"; (15) 
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i.e., the concentration profile in the membrane is linear. Hence 

and 
C 3 (x) = C 3 (0) - x [C 3 (0) - C 3 (d)]/d 

2+ = 2 n R T [C 3 ( 0 ) -  C s ( d)]/d . 

(16) 

(17) 

In analogy to the derivation of Eq. (14), if one divides Eqs. (13a)-(13c) 
by ul, u2, and u3, respectively, and subtracts Eq. (13c) from Eqs. (13a) 
plus (13b), one obtains 

_2C3(x)Fdt~ /dx=dl_ t  J2 J3 = j _ ,  (18) 
Ul U2 U3 

which yields upon substitution of Eq. (15) and integration: 

_ _  c ~ ( d )  O(d)-O(O)= J- n R T  In . (19) 
' J+ F C3 (0) 

Eq. (18) means that the potential gradient in the membrane is not linear, 
i.e., the field is not constant. 

To obtain a general expression for the current requires an algebraic 
manipulation of the Nernst-Planck flux equations similar to that employed 
by Planck in deriving his expression for the liquid junction potential. In 
analogy with Planck [see Maclnnes, 1961, p. 462, Eq. (12)], we define 

U (x) = ul  C1 (x) + u2 C2 (x), (20) 

We also define 

and 

V(x)  = u3 c3 (x) .  

= exp {F [~h (d) - ~ (0)]in R T} 

~,-= exp [EF/n RT].  

(21) 

(22) 

(23) 

From Eq. (19), Eq. (22) gives: 

= [c3 (a)/c3 (0)] J - "  +. 

From Eqs. (17) and (24), 

j_ = 2 n RT  [C3 (0)- C 3 (d)] In 
d In [C 3 (d)/C 3 (0)] 

From Eqs. (10), (19), (22), and (24): 
I !  

In ~,,=ln~+ln-~- 

(24) 

(25) 
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and hence 
= 0' 4,/0". (261 

We next relate U(0), U(d), V(O), and V(d) to the fluxes and the boundar3 
concentrations. Combining Eqs. (13a)-(13c) with Eqs. (20) and (21): 

./1 +J2 = - n R T  d U / d x -  r U  (x) d ~/dx , (27~ 

,13 = - n R T  dV/dx + FV(x) d~ /dx .  (28~ 

First, we solve Eq. (27). Substituting Eqs. (15) and (18) into Eq. (27): 

dU 
d---f-J_ U(x ) /2nRT[C3(O) -xJ+/2nRT]=- (J I+J2) /nRT .  (29) 

The solution to this first-order linear differential equation (see, e.g., Ince, 
1956, pp. 18-19) can be shown to be" 

2(./1 +S2) [-C3 (0)-x J+/2n RT] +A a [C 3 (0)-  x J+/2n RT]-~r-/s+. (30) u(x) = (j+ +j_) 

Evaluation of Eq. (30) at x =0, where U(x)= U(0), gives for the integration 
constant A 1 : 

A~ = [U(0) -  2 C3 (0) (S~ + J2)/(J+ + J_)]/[C3 (0)] - J-/++ (31) 

Evaluation of Eq. (30) at x = d, where U(x)= U(d) and C3 (0) - x  J+/2n R T= 
C3(d), gives, after substitution of Eqs. (24) and (31): 

U (d) - U (0) _ 2 (J~ + Jz)/(J+ + J_). (32) 
c3 (d ) -  C3 (0) 

The solution of Eq. (28) exactly parallels steps (29)-(32) and yields in 
analogy to Eq. (32)" 

V(d)- ~ V(0) 
= 2,/3/(,/+ + S-). (33) 

c3 (d ) -  ~ C~ (0) 

The current I is given by 

I = F (J~ + .]2 - -  J3)- (34) 

Substitution of Eqs. (32) and (33) into (34), and substitution of Eqs. (17) 
and (25) for J+ and J_ ,  finally yields the general expression for the current: 

nFRT[C3(O)-  C3(d)] ~ U(d) -  U(O) ] C3(d) 

(35) 
[ V(d) -  ~ V(O) (ln C3 (d) -\C3(d)__~C3(0)) \ C3(0 ) lIlff)] . 
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Case 1. The Potential at Zero Current, Eo. When I=0, Eq. (35) reduces to 

~ U ( d ) - U ( O ) _  [(ln C 3 ( d ) l n ~ ) / ( l n  C-~0~+In~)]C3(d) [C~C-33~)[V(d)-~V(0) ](36) 
c3 (d)- C3 (0) C3 (0) 

This is similar to the Planck liquid-junction-potential equation (see Mac- 
Innes, 1961, p. 234, Eq. (27)) if n = 1 and if the values of U(0), U(d), V(0), 
and V(d) are taken as those on the membrane side of the membrane- 
solution interfaces. 

Inserting Eqs. (20), (21), and (26) into Eq. (36): 

0' ~. [u ~ c ,  (d) + u2 c2 (d)] - 0" [ul C~ (0) + u2 C2 (0)] 
0' 4. c3 (d)- 0" c~ (0) 

~ U 3  / - -  ~ F 3 \ v /  - -  " [ln~+ln(O'e.lO") 
Inserting Eqs. (8a)-(8c), the corresponding expressions for C(d), and 

Eqs. (9a) and (9b) into Eq. (37) and rearranging: 

[ (a~') l/" + (K a~') lln ]" 
In [ ~ ~  ~ +EoF/RT 

II 

In ~ - Eo F/RT (38) 
a 3  

J~ lln } =u3 ~ Cn, o[(aQ +(KaZ)lln]-[(a'l)l/n+(Ka'2)i/n] 
u ,  J' , , / .  , , , .  �9 �9 a2) ] - [(al)  +r(Ka2) "1 

Eq. (38) incorporates the new definitions 

~., o = e~~ vI, RT (39) 

[i.e., from Eq. (23), ~,=~,,o when there is no current and E=Eo], 

K=-K2/K1 (40) 
and 

r=uz/ul. (41) 

Eq. (38) is the general solution, for the case of two cations and an 
anion, for the zero-current potential of a thick fixed-neutral-site membrane, 
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and  mus t  be  solved numer ica l ly  by  compute r .  ~ In  Eq. (38), the expressiol 

rK~l"=uzK~l" /u ,  Kl/" has the significance of the permeabi l i ty  ra t io  fo 

cat ions  1 and  2. z 

Case l a .  Dilution Potent ial  (e.g.,  150 mM NaC1 vs. 75 mM NaC1). F o  

the case of  a di lut ion potent ia l  t z = a ~ = 0 ,  a'~=a'3=a,  a ,  =a3 

1 The following numerical procedure is the one we used to extract cation per 
meability ratios uzK~/n UlK~ln for biionic potentials in gallbladder epithelium from thi 
equation (paper IV, Table 4e). u3/u 1 may be determined from Eq. (42) by measurinl 
the dilution potential for cation 1, u3/u 2 by measuring the dilution potential for cation 2 
hence, r =-- Uz/U, is known, n is determined by either of two methods discussed in paper I~ 
(19. 384 and Fig. 2) or else from the slope of log G vs. log a [see Eq. (46)]. Thus if E 0 in 
two-cation situation is measured, K=K2/K, becomes the only unknown in Eq. (38) 
To determine K, let 

[ @7) '/~ + (K ai') 1/n ] A' ~----hl [ 

B ' = ( 1 )  ln(a'3'/a'3), 

C '= (u3/u 1) [(al') 1/" + (K a~')l/n], 

D'=  (u31u l) [(a~l)'in + (K a'z)ll"] , 

E' =- (a'l')ltn+ r (K  a'2') 11", 

F ' =  (a~) 1/" + r (K  a'2) x/". 
Then Eq. (38) becomes 

(A' + In r o) l (B ' -  In r o) = (C' r o - D')I(E' ~,, o - F') 
or (38 a~, 

t h = (A' + In in. o)t(B' - In ~,, o) = (in, 0 -- C")I(D" r o - E") =- nz 

where C"=D' /C  ", D"_~E'/C', E"-~F'/C' ,  and remembering that In ~n,o=EoF/nRT 
One then computes t] 1 and t/z for a given value of K, and varies K until t h = qz, avoidinl~ 
the trivial solution of K that makes both r h and t/2 zero. This method is similar to thal 
devised by Planck for solving his liquid-junction-potential equation (MacInnes, 1961, 
p. 235, Fig. 8). 

2 Eq. (38) is identical in form to an equation we have derived, extending the treat- 
ment of Conti and Eisenman (1965), for the zero-current potential of a fixed-site ion- 
exchange mosaic, if one replaces us~u1 in Eq. (38) with S+/S - in the mosaic equation. 
S+/S - equals uslu a if (in the terminology of Conti & Eisenman, 1965) Cd" (x)= Cff (x) 
and if du /dx=O=dC~/dx=dCf f /dx .  For the case of dilution potentials, the ion-ex- 
change mosaic equation simplifies to 

( S + - S - )  R T . n a "  
E0=  S+ + S_ ~ 1  a' " 

This is identical in form to our Eq. (42), S + being analogous to 1/ul, and is identical 
to Eq. (99) of Conti and Eisenman (1965) except that they have an error in sign. 
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Eq. (38) reduces to the form 

RT (ul--u3) a" 
E~ F (ul+u3) In a~;-" (42) 

In Eq. (42), the mobility ratio ul/u3 alone has the significance of a permea- 
bility coefficient ratio for the i th ion. Note that Eq. (42) is independent of 
both n and the K's. 

Case lb.  Biionic Potential (e.g., 150ram NaC1 vs. 150mM KCI). For 
ra,, ,, , , , ,  , the case of a biionic potential ~ 2 =a3 =a3=ax, al =0=a2), Eq. (38) 

reduces to 
Ka" 

l n ~ ' ~  +E~  u a 

- E o F / R T  ul 

Y- f l ~  o:r~l/n (/~, "~l/n ] 
,, 1In i 1/n " [~.,or(Ka2) - (a l )  

(43) 

Eq. (43) may be solved for K by the same numerical procedure described in 
footnote 1 for solving Eq. (38). 

Case2. Conductance and the Current-Voltage Relation in Single-Salt 
Solutions. We restrict consideration to the case where a single salt is present, 
though not necessarily at the same concentration on both sides of the 
membrane; i.e., a~=a~'=0, a'l =a'3=a', aT=a'3'=a ''. Eqs. (9a) and (9b) 
simplify to: 0' = 0" =(K3/KI) 1/2". 

Starting from Eq. (35), inserting Eqs. (8a)-(8c) plus the corresponding 
equations in C(d) plus the electroneutrality condition plus Eq. (26), and 
rearranging, one eventually obtains: 

I _  nRTF K~/n K(_~3)1/2" (a')l/"-(a") ~/'- 
d71/~ 

In k~7-} (44) 

�9 {U 1 [ln ~ a " ~  1/n R T ]  [Ill (a" ~l/n RT]}. \ a' ] +EF/n -u3  k--a-Z-] -EF/n  

Substituting Eq. (42) for the zero-current potential Eo, and remembering 
from Eq. (2) that the applied voltage E * =  E - E o :  

I = - F2 E* (u 1 + u3) (a") 1/~- (a') I/'- d?l/. (K~ K3) 1/2n [ a"~ 1/n (45) 

In k-a7 ] 

In Eq.(45), the expressions ul(K1K3) 1/2" and u3(K1K3) 1/2~ have the 
significance of the cation and anion permeability coefficients, respectively. 
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Since the factors multiplying E* in Eq. (45) are independent of I or E* 
the current-voltage curves are linear, both in symmetrical and asymmetrica 
solutions. 

In symmetrical solutions where a '=  a" =a and thus 

[(a,)l/,,_(a,,)l/,,]/in [ a" ] 2/, =-(a)l/"' 

Eq. (45) simplifies to the following expression for the conductance G (de. 
fined as -1/E*): 

F 2 al/n 
G = ~  (Ki K3)l/2"(ul +u3) 

(461 
= F 2 l ,i~)wi1/n[c(w)]i/n (KIK3)I/2n(uI-I-u3) 

d \?I 

where C(w) is the salt concentration and ~w the activity coefficient in the 
aqueous phase. 

The significance of Eq. (46) is that the conductance-concentration 
relation is linear or nearly linear for n equal to or close to 1. Further, the 
partial cation conductance (FZld) (?w/?) ~/" [C(w)] l/, ul (K1/{3) 1/2, and the 
partial anion conductance (F2/d)(?w/v)i/~ [C(w)]l/"u3 (Ki K3) 1/2" are not 
independent of each other, since the anion equilibrium constant K3 appears 
in the cation expression and the cation equilibrium constant K~ appears 
in the anion expression. That is, the magnitude of the partial anion con- 
ductance depends on which cation is present, and vice-versa- in contrast to 
the result for a thin membrane [Eq. (102), p. 323]. Figuratively speaking, 
one could describe this by saying that anions are dragged into the membrane 
by the boundary potential established by a strongly preferred cation, to 
preserve electroneutrality. 

We may finally note that cation permeabilities are proportional to either 
ui, uiK~/", or u~K~/2", depending on whether they are extracted from 
measurements of dilution potentials [Eq. (42)], biionic potentials [Eq. (43)], 
or conductances [Eq. (46)], respectively. Thus, these three types of measure- 
ments will generally yield numerically different sets of cation permeability 
ratios, and often even different permeability sequences. 3 

Experiments on several epithelia (frog gallbladder, choroid plexus, and 
intestine: E. M. Wright, personal communication) suggest that their be- 
havior is approximated by this model of a thick fixed-neutral-site membrane. 

3 However, the cation-to-anion permeability ratio extracted from a conductance 
measurement, ui(KiK3)i/2n/u3(KiK3)l/2"=ui/u3, is the same as the cation-to-anion 
permeability ratio taken from dilution potentials. 
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Model 2. Thick Membrane with Shunt 

This model is identical to the previous model (thick membrane with 
fixed neutral sites), except that, in parallel with and insulated from the fixed- 
neutral-site channels, there are shunts in which ion mobility ratios are the 
same as in free solution�9 The effective areas of the neutral-site channel and 
of the shunt channel are written as Pv and p,, respectively. Ion mobilities 
are represented by u~ in the neutral-site channel and by v~ in the shunt 
channel. Activity coefficients are represented by ~v in the neutral-site 
channel and by y, in the shunt channel. 

For the neutral-site channel, the excess cation flux over anion flux 

J =-J1 + J 2 - J 3  =I /F  (34) 

is obtained from Eq. (35) which, after substituting Eqs. (8)-(10) and (20)- 
(23), eventually becomes: 

p,,nRT U. 3 3 )  I - - k  3 3 I .J ----(-.-~- ~ H - u  3 In \--a-~3 ] - ln~,  (47) 

where 
In (K1 a'a')l/'+(K2 a'2') 1/€ ] ~.+ln 

H -  
~n [(Ki a'i') i/n + (Kz a2') i/'] (48) 

tt 1]n , ,  l / n  �9 {~nEul(Klal)  +uz (K z a2 )  ] - [ u l ( K t  a'l)l/n+uz(Kza'z)l/n]} 
- [(K 1 a'i) i/n + (K2 a~) i/n] 

For the shunt channel, the excess cation flux over anion flux 

J * - J ~  + J * - J ~  (49) 

is given by an expression similar to Eq. (47), setting n = 1, K1 = K2 =/s = 1, 
and replacing ~, by ~: 

{[~(vla'l'+v-za'z')-(vla'l+v2a'z)] [In (~a~'~]_ (a~'  ~ 
�9 ~(a;+a'2')-(a'l+a'2) ] \ a'3 ]3 v31n \-~--~-aJJ 

where 
~ e E F / R T .  

(50) 

(51) 
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The general current equation 

I = F ( J  + J*), (52 

obtained from the sum of Eqs. (47) and (50), is unwieldy and does no 
simplify. However, several particular cases do simplify. 

Case 1. Dilution Potentials. If a . . . . . . . . . .  = a "  z =a2 =0,  al =as = a ,  al =a3 
I = 0 ,  then O'=O"=(K3/KO ~/2", and J = - J * .  Eq. (52), substituting Eqs 
(47), (48), and (50), simplifies to: 

where 

and 

Eo - - R T  (P1-P3) a" 
F (P~+P3) In a~ 

1~ = ul (K1 K3) 1/2" q- •s A, v 1 , 

P3 = u3 (K1 K3) 1/z" + 2~ A,, v 3 , 

A, , -  ( a ' -  a")ln [(a') 1/"- ( a " ) l / n ]  . 

(531 

(541 

(551 

(561 

(571 

2s is a measure of the area of the shunt relative to the area of the 
cation channel. In Eqs. (54) and (55), the first term on the right-hand side 
[ul (KIK3) ~/2~ or us(KIK3)~/zq represents the permeability of the neutral- 
site channel, and the second term (2sA, v~ or 2sA,v3) the permeability ot 
the shunt, to the cation and the anion, respectively. Note that Eq. (53) is 
identical in form to the corresponding equation for a fixed-neutral-site 
channel without shunt [Eq. (42)]. Thus, the presence of a shunt does no| 
affect the form of the relation between dilution potentials and concentration 
gradient, though it changes the meaning of the permeability parameters. 

Case 2. Conductance and the Current-Voltage Relation in Single-Sah 

Solutions. In asymmetrical solutions of a single salt (a'2 =a'2' =0, al =a ;  - a ' ,  

a i ' = a T - a " ,  so that O'=O"=(K3/K1)I/z"), Eqs. (47), (48), (50), and (52) 
simplify to: 

I = -- G n E*(P~ +Pa) (58) 

where P~ and Ps are given by Eqs. (54) and (55), and 

P" F2 [ (a")l/"- (a')'/" ] 
Yv t~ 

(59) 
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In symmetrical solutions of a single salt (a' = a " - a ) ,  Eq. (58) still holds, 
with G, and An simplified to 

G, = Pv F2 a 1/"17~/" d, (60) 

A, = a ("- 1)/,. (61) 

Eq. (58) means that the current-voltage relation is linear in both symmetrical 
and asymmetrical solutions. Eqs. (60) and (61) mean that the conductance- 
concentration relation in symmetrical solutions is linear if n = 1. Eqs. (58) 
and (60) are the same as the corresponding equations for a thick membrane 
without shunt [Eqs. (45) and (46)], except that the meaning of the permea- 
bility coefficient P~ is changed from u~(K1K3) ~/2" to [u~(K~K3)a/2"+ 
2~A,vd. 

Eqs. (57) and (61) for A, are identical if n = 1, and yield closely similar 
values if n is not too far from 1. For instance, with n =0.8, A, =0.29 from 
Eq. (61), whereas A,=0.31 from Eq. (57) if a"/a'=2. Since permeability 
ratios are a function of An [Eqs. (54) and (55)], sets of ratios extracted from 
dilution potentials and conductances will be identical if n = 1 and very 
similar if n = 0.8. 

. _ a  r p , a r t  . r, Case3. Biionic Potentials. If a~ - 2 = 0 ,  a~ =a~ = a ,  2 = a 3 - a  , and 
I = 0 ,  then O'=(K3/K~) ~/2", O"=(K3/K2) ~/2", and J = - J * .  Eq. (52), sub- 
stituting Eqs. (47), (48), and (50), becomes: 

[(K1 Ka)l/2n(a,)l/._(K2 Ka)l/Zn(a,,)l/n] [H_u 3 l n _ ~ 7  ] a ' '  q 

.2.  (a,, ] . .  1 

(a"-a [. (~~ a' ] (~~ a"  ] (62) 
2~V3 

- -  In  . - - - 7 /  
( a " ]  ') ~oa"--a' ~oa J In \ ~r-/ 

where now 
/In ~~ a" a")l/n-ul(K 1 a') 1In /-/= 

~.,o (K2 a")l/"-(K1 a,)l/. , 
40 ---~ eE~ , 

~n, 0 ~- eE~ FIn RT . 

(63) 

(64) 

(65) 

Eq. (62) is too complex to be of use for extracting permeability ratios 
from experimental potential differences, even when simplified by setting 
ua =0  (as in the gallbladder: see paper IV, p. 382). 
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In the following papers (papers III and IV), we shall show that io~ 
permeation across rabbit gallbladder epithelium corresponds well to th 
predictions of this model of a thick fixed-neutral-site membrane with shun| 

Differences Between "Thick" Membranes and "Thin" Membranes 

The differences between a thick membrane and a thin membrane ma'. 
be discussed in terms of the concepts of microscopic electroneutrality am 
the so-called Debye length. In a salt solution, the tendency of ions to dis 
perse randomly is opposed by the electrical work required to separat~ 
positive and negative charges. Thus, the concentration of cations as a func 
tion of distance from an anion follows a Poisson-Boltzmann distribution 
from which the Debye length L may be defined as a measure of the averag~ 
distance between cations and anions. L 2 varies directly as the dielectriq 
constant and inversely as the salt concentration of the medium, and i: 
given by Eq. (80) (in the bathing solutions) or Eq. (72) (within the mem 
brahe). If cations and anions are unequally soluble in a membrane [i.e. 
have different values of uo (w) -  #o (m)] because of carriers, multipolar sites 
or charged sites, then the membrane region within a few Debye lengths o: 
the membrane-solution interface will contain a net excess of charges of on~ 
sign, balanced by an excess of oppositely charged ions in the aqueous solu 
tion within a few Debye lengths of the interface. This excess space charg~ 
is a function of the bathing solution ion concentrations and the ion equilib 
rium constants of the membrane sites. A consequence of the space charg~ 
is that the electrical potential 0 immediately at the solution side of the inter 
face is not identical to 0 in the bulk solution. 

If, now, the membrane is sufficiently thin that its thickness is comparabh 
to or less than its Debye length, then this space-charge region extend: 
through the whole membrane thickness, and the space-charge densit! 
represents a significant fraction of the total ion concentrations in the mere 
brane. Furthermore, the change in ~ across the interface is sufficientl3 
gradual compared to the membrane thickness that it is meaningless to refe~ 
to boundary potentials; and ~p(x) and ion concentrations C~(x) are no  
uniform throughout the thickness even when the membrane separate~ 
identical solutions. 

If, on the other hand, a membrane phase is very thick compared to th( 
Debye length within it, then the space-charge region at the interfaces oc. 
cupies an insignificant fraction of the membrane thickness. The membran( 
as a whole, and any microscopic portion of it that is also thick comparec 



Membranes with Fixed Neutral Sites 311 

to the Debye length, is virtually electroneutral; i.e., the difference between 

cation and anion concentrations is a negligible fraction of the concentrations. 
From this it follows, as assumed in the previous two models and discussed 
further below, that there is a change in ~ across the interface within a 
distance that is a very small fraction of the membrane thickness, making it 
possible to refer meaningfully to this change as a boundary potential; it also 
follows that in symmetrical solutions O (x) and Ci (x) are uniform throughout 
virtually the whole membrane thickness. 

In this section we derive ~ (x) and Ci (x) for a thin membrane with fixed 

neutral sites in symmetrical solutions at zero current. Our treatment con- 
siders the membrane to be homogeneous, but the conclusions may also be 
qualitatively applicable to a predominantly low-dielectric-constant mem- 

brane in which the sites are confined to high-dielectric-constant pores 
(e.g., nystatin-treated bilayers: pp. 324-325). A derivation for a thin mem- 
brane with neutral carriers has been given by Ciani et al. (1966). 

Assumptions and notation are the same as for model 1, except that for 
mathematical convenience the center of the membrane is taken as x =0 so 
that the interfaces become x = - d / 2  and x = +d/2; activities are equated 

with concentrations; and consideration is restricted to symmetrical solutions 
of a single cation (subscript 1) and a single anion (subscript 3), i.e., al = 

r I !  t :  t r  _ _  

a3 =a3 =a3  = as = a. Across the membrane-solution interfaces, the electric 
potential ~,, the electric displacement vector D, and the electrochemical 
potential ~ are continuous; the stanard chemical potentials/~o, the relative 
dielectric constant e, the ion concentrations C~, and the electric field or 
potential gradient dr  are discontinuous. The rationalized MKS system 
of electrical units is used. The problem is to derive ff (x), C~ (x), and Ca (x) 

as a function of the bathing-solution activity a, the standard chemical 
potential of the cation ~o (m) and of the anion #o (m) in the membrane, and 
the relative dielectric constant in the membrane em and in the aqueous 
solution e~,. 

We begin by deriving an expression for O(x) in the membrane phase 
( 0 < l x l  _-<ld/21). 

Within the membrane 

a 1 (x) = K 1 a e-V t~ (~)-o (~)1/RT, (66) 

a 3 (x) = K3 a e + v to (x)- o (~n/Rr (67) 

where K1 and K 3 are related to #~ and #~ by Eqs. (6a) and (6c), and 
(o~) and ~, ( - oo) are taken as zero. 

22 J. Membrane Biol, 4 
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The excess space charge concentration in the membrane,  p, is given bl 

p (x) = F [a 1 (x) - a 3 (x)] (68 

where concentrations have been approximated by activities. 

The Poisson equation reads 

dZO --P/emtO (69 dx 2 = 

where to is the permittivity of free space. 

Substituting Eqs. (66) and (67) into Eq. (68) and then Eq. (68) int{ 
Eq. (69) yields the Poisson-Boltzmann equation: 

dZ O _ aF (K 3 eVOmr_K1 e_F~mr). (70 
2-x  -  mS---o 

Provided the space charge is sufficiently low that  0(x) ~RT/F  (see p. 319) 
one may introduce the approximation e -+r r 1 +_FO/RT so that  Eq. (70 
becomes 

dZO ~ (K3-K~)aF 
dx z - 4 (71 

8 m 8 0 

where g~,  the effective Debye length in the membrane,  is defined by 

L,,,- [/RT8m eo/F 2 a (K1 + K3). (72 

The solution to Eq. (71) is 

RT(K~ -K3) 
~//(x)= F(KI +K3) t-A1 e-X/Lm+A2e~/L" (73 

where At and Az are constants of integration. 

Combining Eq. (73) with the symmetry condition ~ ( - d/2) = ~, ( + d/2 
yields 

so that  Eq. (73) becomes 

RT(K 1 -K3)  
r  e(G+K ) 

A 1 =A 2 (74 

t-2Acosh(x/Lm), for O<=lxl<=ld/21. (75 

We next derive an expression for ~ (x) in the aqueous phase (I x l>ld/2 ]) 
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The conditions 

and 
al (x) = a e - F ~'/Rr , (76) 

a 3 (x) = a e r ~/RT (77) 

combined with Eqs. (68) and (69) give the Poisson-Boltzmann equation: 

d 2 ~ a F (eI~,/RT _ e-e~'/R~) (78) 
~ X  2 ~ 8w~. 0 

where e~ is the relative dielectric constant of the aqueous phase. The con- 
dition ~ .e .RT/F simplifies Eq. (78) to: 

d 2 I~ - d, l r  2 (79) 
d x2 - v,/--,w 

where Lw, the Debye length in the aqueous phase, is defined by 

L w - ~ R T e ~  eo/2FEa. (80) 

The solution to Eq. (79) is 

(x) = B 1 eX/Ls + B2 e- x/Lw. (81) 

AS x - - ~ ,  ~(x)-~0,  so that  B1 =0  and Eq. (81) becomes 

J/(x)=U2e -~/L~', for Ix l>d/2 .  (82) 

To solve for A 1 in Eq. (75) and B2 in Eq. (82), we invoke the continuity 
of the electric displacement vector D at the interfaces x = +d/2 (Peck, 1953), 
assuming surface charge and surface dipole potentials to be negligible: 

D=e  m -  = e ~ - -  (83) 
dx ,,, dx  w 

-~xm -d--~Xw d~ where d~ and d r  refer to the value of ~-x on the membrane side 

and the aqueous side, respectively, of the interface. 

The condit ion that  ff (x) is continuous at the interfaces gives, equating 
Eqs. (75) and (82) and letting x = d/2: 

B 2  e-d~2 L w _  RT(K~ - K a )  
F(K1 + Ka ) q- 2A 1 cosh (d/2~L,.). (84) 

22* 
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The condition 
x =d/2: 

Eq. (83) gives, substituting Eqs. (75) and (82) and lettin~ 

-e~,B2 e_e/2Lw_ 2emA1 sinh(d/2Lm). (851 
Lw L,~ 

Combining Eqs. (84) and (85) to solve for A l: 

- RT(K 1 - K3) 
A1 = (861 

/ d e,. L., . d 
2F(KI +Ka)/cosh - - + - -  - -  sinn - - /  

\ 2L,, ~, Lm 2L,,] 

Inserting Eq. (86) into Eq. (75): 

x d RT(K '+K3)  [1- (cosh- -~) / (cosh~-~m+11sinh^d  t]  
~k(x)= F(K1 +g3) zLm/J ' (87~) 

O<lxl<ld/2l ,  
where r/is defined by 

em Lw = V(K1 + Ka ) e~/2 ew (88) 
r/- e~L., 

since, from Eqs. (72) and (80), 

Lw/L,. = ]//(K 1 + K3) e~/2 era. (89) 

Inserting Eq. (86) into Eq. (85) to solve for B2 and inserting the resulting 
expression for B2 into Eq. (82): 

�9 d rl RT(K1-Ka)  ( s m h - - ~ )  e (a/2-~)/r~ 
(x)-  , I xl=>[d/21. (90) 

F(KI+K3) (cosh d -fL-~ + r/sinh -~L~) 

Note that Eqs. (87) and (90) assume the same value at x = +d/2, as 
required by the assumption that O(x) is continuous. Inserting Eq. (87) into 
Eqs. (66) and (67), and approximating C1 (x) and Ca (x) by al (x) and as (x), 
respectively, gives expressions for ion concentrations in the membrane. 

Eqs. (66), (67), (87), and (90) have been used to calculate the typical 
potential and concentration profiles in a thin membrane depicted in Fig. 2, 
the effect of salt concentration on the potential profile (Fig. 3), the effect 
of ion equilibrium constants Ki on potential profiles (Figs. 4 & 5), and the 
effect of membrane thickness on the potential profile (Fig. 6). The following 
qualitative conclusions about thin membranes emerge from Figs. 2-6: 

1. Provided that cations and anions have unequal equilibrium constants 
(standard chemical potentials) in the membrane, they also have unequal 
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Fig. 2. Calculated potential profile (dashed line) and concentration profiles (dotted 
lines) in a thin membrane with fixed neutral sites (ordinate), as a function of x (abscissa), 
the distance in angstroms from the center of the membrane. The membrane thickness d 
is 80 A, so that the membrane extends from x = --  40 to x = 4- 40 A, while the aqueous 
solutions are at Ixl--> 140 AI. The cation equilibrium constant K 1 is taken as 1 x 10 -3, 
the anion equilibrium constant K 3 as 0.2 x 10 -3,  the cation and anion concentrations 
in the bulk bathing solutions a are 100 raM, the temperature 20 ~ and the relative 
dielectric constants in water and in the membrane cw and e m are taken as 80 and 3, 
respectively. ~u(x) was calculated from Eq. (87) inside the membrane and Eq. (90) 
outside, the cation concentration from Eq. (66) inside and Eq. (76) outside, and the 
anion concentration from Eq. (67) inside and Eq. (77) outside. The calculated Debye 
length is 76.1 .~ in the membrane (Lm)  , and 9.6 A outside the membrane in the aqueous 
solution (L~). The figure has been condensed by interrupting the concentration axis 
between 0.12 and 99.85 rnM. Note that there is no boundary potential, and that the cation 
concentration exceeds the anion concentration in the membrane, whereas the reverse is 
true in the aqueous solutions within ca. 100 A of the interfaces. For  all sets of values in 
Figs. 2-6, the calculated space charge inside the membrane [i. e., the area between the 
cation and anion curves, or the integral of a 1 ( x ) -  a3(.x')] equals the space charge outside 
the membrane within the error of the numerical integration procedure used (___ 5 %); 
an agreement that would not have been obtained had the approximation ~ R T / F  

introduced significant error 
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Fig. 3. Potential profiles in a thin membrane with fixed neutral sites (dashed lines, 
ordinate), calculated from Eqs. (87) and (90), as a function of bulk bathing-solution 
concentration. The abscissa is x ,  the distance from the center of the membrane. The 
membrane thickness d is taken as 80 A, the equilibrium constants K1 as 1 x 10 .3 and 
/(3 as 0.2 x 10 -a, the bulk-solution concentrations a as 1, 10, or 100 mM, and the other 
parameters as in Fig. 2. The calculated Debye length is 761.3, 240.7, and 76.1 A inside 
the membrane, and 96.3, 30.5, and 9.6 A outside, at 1, 10, and 100 mM, respectively. 

Note that ~ increases with concentration 

Fig. 4. Potential profiles in a thin membrane with fixed neutral sites (dashed lines, 
ordinate), calculated from Eqs. (87) and (90), as a function of ion equilibrium constants. 
The abscissa is x ,  the distance from the center of the membrane. The membrane thickness 
d is taken as 80 A, the bulk bathing-solution concentration a as 100 raM, the equilibrium 
constant K 1 a s  1 x 10 -s, 1 x 10 -4, or 1 x 1 0  - 3 ,  K 3 as 0.2 K 1 in each case, and the other 
parameters as in Fig. 2. The calculated Debye length is 761.3, 240.7, and 76.1 A inside 

the membrane at K1 = 10 -s, 10 -4, and 10-a, respectively, and 9.6 A outside the 
membrane in all three cases. Note that g increases with K 

c o n c e n t r a t i o n s ;  i .e. ,  the  m e m b r a n e  bears  a ne t  cha rge  (Fig.  2). T h e  excess 

ca t i on  c o n c e n t r a t i o n  in the  m e m b r a n e  is b a l a n c e d  b y  an  excess a n i o n  c o n -  

c e n t r a t i o n  i m m e d i a t e l y  ad j acen t  to  the  m e m b r a n e ,  as seen b y  c o m p a r i n g  
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Fig. 5. Potentials in a thin membrane with fixed neutral sites (ordinate), calculated 
from Eq. (87), as a function of the cation equilibrium constant K1 (abscissa). Both axes 
are logarithmic. The curve ~(0) gives the potential at the center of the membrane, 
whereas ~,(d/2) is the potential at the membrane-solution interface. The membrane 
thickness d is taken as 80/~, the bulk bathing-solution concentration a as 100 raM, K 3 
as 0.2 K1, and the other parameters as in Fig. 2. As K1 goes from 10 -6 to 10 -2, the 
calculated Debye length goes from 2407 to 24.1 ,~, in the membrane and remains at 
9.6 A outside. Note that q~(0) is always much greater than ~t(d/2), and that both increase 

with K1 

the areas between the cation and anion curves of Fig. 2 inside and outside 

the membrane. (This statement would also apply to a thick membrane, 

but the excess cation concentration would then be an insignificant fraction 

of the total concentration, whereas the cation concentration is approxi- 

mately five times the anion concentration in the thin membrane depicted 

in Fig. 2.) For most of the curves of Figs. 2-6, the Debye length is com- 
parable to or greater than the membrane thickness. 

2. The potential within the membrane is not uniform but reaches a 

maximum in the center, and rises so gradually from the interfaces to the 

center that it would be meaningless to speak of a boundary potential 

(Figs. 2-4, and the lower curves of Fig. 6). The potential immediately 
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Fig. 6. Potential profiles in a thin membrane with fixed neutral sites, for four differenl 
membrane thicknesses, calculated from Eq. (87). In each case, g in mV (ordinate) i~, 
plotted as a function of the distance x from the center of the membrane in angstroms, 
(abscissa). The membrane thickness d is taken as 20,000, 2,000, 200, and 80/~ in the 
top, upper-middle, lower-middle, and bottom curve, respectively./(1 is taken as 2 x 10-4 
K 3 as 1 x 10 -4, a as 150 raM, and the other parameters as in Fig. 2. The calculated Debye 
length is 124.3/~ inside the membrane and 7.9/~ outside in all cases. Note that in tbe 
thickest membrane (top) virtually the whole potential is developed within a small fraction 
of the membrane thickness near the interface and may be considered a boundary poten- 
tial, but that the potential change becomes increasingly smoothly distributed through 
the membrane as the membrane becomes thinner; also note that the potential increases 
with increasing thickness until a limiting value of 8.4 mV is reached, the boundary 

potential for a thick membrane with K1/K 3 = 2 

adjacent  to the membrane  differs slightly f rom the bulk-solut ion value 

(best i l lustrated in Fig. 5, lower  curve). 

3. F o r  low values of m e m b r a n e  space charge, the potent ia l  is low 

(_=10 mV, of ten 41  mV, in Figs. 2-6). If ~ ~ R T / F ,  r is too  small to 

influence ion concent ra t ion  profiles in the membrane ,  which are nearly flat  

(e.g., in Fig. 2 the cat ion concent ra t ion  dips and the an ion  concent ra t ion  

rises very  slightly toward  the center  of the membrane ,  associated with a 
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positive potential of <2 mV). ~ increases with increasing bathing-solution 
salt concentration (Fig. 3), increasing membrane thickness (Fig. 6), and 
increasing values of the ion-site binding constants (Figs. 4 & 5). 

4. If the membrane is thick enough that its thickness is large compared 
to the Debye length, and if ~ inside it becomes large compared to [#o (w)-  
#~ for anions, then the potential (due ultimately to preferential 
cation solubility) drags anions into the membrane in sufficient numbers 
nearly to balance the cations, the potential profile through the membrane 
is virtually flat, and most of the potential change is within a small fraction 
of the membrane thickness near the interfaces and may be described as a 
boundary potential (top curve, Fig. 6). Under these conditions, the potential 
depends only on the ratio K1/Ka as in Eq. (9) for a thick membrane, and 
is independent of concentration and of further increases in thickness. 

The assumption of low space charge [O(O)~RT/F] introduces two 
simplifications into the mathematical treatment of permeation in thin mem- 
branes (pp. 319-327). First, one may assume that the difference between 
the potential at the membrane-solution interfaces and in the bulk solution 
is negligible ([0(+d/2)[ ~RT/F). Secondly, any potential due to a con- 
centration gradient across the membrane or to an applied current, if its 
magnitude is significant compared to RT/F, will be virtually unperturbed by 
the space charge. Therefore, the potential gradient or electric field in the 
membrane will be virtually constant (Walz, Bamberg & L~iuger, 1969, 
p. 1155; see Neumcke & L/iuger, 1970, for discussion of the effects of high 
space charge). A further consequence of this assumption, to be derived 
below [Eq. (102)], is that the conductance-concentration relation should be 
linear. The reason why we have introduced the simplifying assumption of 
low space charge is that the conductance-concentration relation is in fact 
linear in thin lipid membranes containing nonactin carriers after correction 
for ionic-strength effects (Szabo et al., 1969, Fig. 10) and in thin lipid mem- 
branes containing nystatin "pores" up to ion concentrations of about 
0.1 M (Cass, Finkelstein & Krespi, 1970, Fig. 3), suggesting that the space 
charge is low in these model systems. 

Model 3. Thin Membrane Without Shunt 

We retain from model 1 the symbols; minor assumptions (c), (d), (e), 
(f), and (g) concerning perfect stirring, uniformity of #o, V, and u through 
the membrane, the relation a ,=v Cr, and interracial continuity of the 
electrochemical potential; and the major assumption that the membrane 
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contains sites that are polar but have no net charge. In particular, we return 
to the convention that the axis x = 0 coincides with the membrane-solution 
interface, rather than with the center of the membrane as on pp. 310-319. 

The major change in assumption from model 1 is that the membrane 
is now considered sufficiently thin to violate microscopic electroneutrality 
(el. pp. 310-311). Thus, it is not necessarily true within the membrane that 
Ca (x )=  C2(x )=  Ca (x). In addition, we restrict consideration to conditions 
under which the space charge of the membrane is sufficiently low that 
] ~0(0)- ~0'l and I ~ ( d ) -  ~ , " I ~ R T / F  and the field within the membrane may 
be approximated as constant (see above). 

We begin by relating ion activities on the membrane side of the mem- 
brane-solution interface to activities in the bulk bathing solutions, assuming 
continuity of the electrochemical potential across the interfaces and defining 
K's as in Eq. (6): 

ai(O)=Kia~e -zitg'(~ a~(d)=Kia'~'e -z't~'(a)-q'''~F/RT. (91) 

Since the condition Ir -~" t  ~ R T / F ,  I r  ~"l ~ R T / F f o l l o w s  from the 
assumption of low space charge, the exponential factor is approximately 1, 
and Eq. (91) becomes: 

ai(O)=Kia ~ ai(d)=Kia~'. (92) 

Since a, =7 C~, the Nernst-Planck flux equations assume the form [see 

Eqs. (11)-(13)]: 
J1 = - ux n R T  d C 1 / d x -  ul C1 F d ~ / d x ,  (93a) 

J 2  = - -  1,12 l~ R T dC2/d x - u 2 C 2 F d ~/d x ,  (93 b) 

J 3  "= - -  u 3  n R T  dC3/d x + u 3 C3 F d tp/d x .  (93 c) 

Adding Eqs. (93a) and (93b) and defining (cf. p. 301) 

U (x) = ul C1 (x) + u2 C2 (x) (20) 
yields: 

J1 + J2 = - -  n R T  d U / d x -  UF d ~ / d x .  (94) 

Under conditions of low space charge, dO/dx  is approximately constant: 

d r  E/d. (95) 

Substituting Eq. (95) into Eq. (94) and integrating between x = 0 and x = a 
gives: 

n R T  (In 4,) [U(0)- 4, U(d)] (96) 
J l + J 2 -  d (~,-1) 
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where 
~n=e I~HnRT. (23) 

Similarly, substituting Eq. (95) into Eq. (93c) and integrating gives: 

nRT (lnr a C~ ~ , -u  a C~') 
-/3 d (4,-  1) (97) 

Using the definition of current 

l=F(Jl  + J2-Ja) (34) 

and substituting Eqs. (1) and (92) into Eqs. (20), (96) and (97), and then 
Eqs. (96) and (97) into Eq. (34), gives the general expression for the current: 

I -  nFRT ( In 4. ] {[ul(K 1 a,1)l/.+u2(K2 a,2)l/.+u3(Ka a,a,)l/.] 
- d~ 1/~ \ ~ ]  (98) 

-~,[ul(Kla"al /"+u tK a,,~l/. z ,  

Case 1. The Potential at Zero Current, Eo. When I=0,  Eq. (98) reduces to 

ul(K1 a'l')l/n+u2(K2 a'2')l/n+ua(Ka a'a) 1/n ] - n R T  In (99) 
E~ F ul(K 1 a ' l ) l / n + u z ( K 2  ~ - ~ - - ~ - ' ~ 1  " t *23  T U 3  k J ~  3 t ~ 3 )  d 

The expression for dilution potentials is obtained by dropping the terms 
u2(K2a'2') 1/" and u2(Kza'2)I/"; the expression for biionic potentials is ob- 
tained by dropping the terms u2 (K2a'2') ~/n and ul (K1 a'~) ~/~. 

When n = 1, Eq. (99) is similar in form to the Goldman-Hodgkin-Katz 
equation or "constant-field equation" [see paper IV, Eq. (1)], modified by 
the partition coefficients K~. The expression ui(K~) ~/" has the significance 
of a permeability coefficient for the i th ion. 

Case 2. Conductance and the Current-Voltage Relation in Single-Salt 
_ a  tt Solutions. If there is only a single salt, then a ~ -  2 =0, a~ =aa . . . . .  = a ,  a~ = 

" - a "  Substituting Eq. (23) into Eq. (98) gives the current-voltage relation a 3 ~ . 

in asymmetrical solutions (a' 4:a"): 

EF 2 
d~ 1/n 

{ul(K1 a')l/"+u3(Ka a")I/"--eEF/"RT[ul(K1 a")l/"+ua(K3 a')i/"]} (100) 
(egF/~ RT_ 1) 

Since the factor multiplying E on the right-hand side of Eq. (100) contains 
two exponential terms in E and is not voltage-independent, the current- 
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Fig. 7. Current-voltage relations for a thin membrane with fixed neutral sites in asym- 
metrical single-salt solutions, calculated from Eq. (100). Voltage is in mV, current in 
arbitrary units, n was taken as 1, the cation-to-anion permeability ratio [u l(K)n/ua (Ka)"I 
as 0.1. The activity of one bathing solution (a') was taken as 100 mM; the activity of the 
other (a") as 100, 300, 500, 800, or 1000 mM, indicated beside the appropriate curve. 
The potential is that of side " with respect to side '. Note that when a'4: a", the curves 
are nonlinear, the greater slope (lower conductance) being for currents tending to make 
the concentrated solution positive. The curves were normalized so that the 100:100 mM 

curve goes through the point I =  2, V= 50 mV 

voltage relation in asymmetrical  solutions is nonlinear, provided thal 

ulKJi/"+u3K~/", i.e., provided tha t  the permeabili ty of the cat ion and 

anion are unequal.  If the anion is more permeant  than  the cation, the con- 

ductance is lower for applied voltages making the concentrated solution 

positive than  for  voltages making  it negative, as il lustrated in Fig. 7. If the 

cat ion is more  permeant  than  the anion, the reverse is true, and if the cation 

and  anion have equal permeabilities, the current-voltage relation is lineai 

(Fig. 8). 

In symmetrical solutions (a' = a " - a ) ,  Eq. (100) reduces to:  

I =  - EF2  al/" (ut  K~/" + u3 K~/") . (101) 
dTX/" 

The factor  mult iplying E is now voltage-independent,  so that  the current- 

voltage relation in symmetrical solutions is linear. 
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Fig. 8. Current-voltage relation for a thin membrane with fixed neutral sites in asym- 
metrical single-salt solutions, calculated from Eq. (100), as a function of the cation-to- 
anion permeability ratio P1/P3 =-u i (K 01/"/u a (/Ca)l/". The activity of one bathing solution 
(a') was taken as 100 mM, that of the other (a") as 1000 mu. The potential is that of 
side " with respect to side '. Note that if the anion is more permeant than the cation 
(P1/P 3 < 1), the slope of the curves (the resistance) is higher for applied voltages making 
the concentrated solution positive than for voltages making it negative, that the reverse 

is true if P1/P3 > 1, and that the relation is linear if P1 =/ '3 

F r o m  Eq. (101) and  the definition of conductance (G = - I / E * ) ,  

F 2 al/n 
_ _ _  ~ / .  K ~ / , , )  G -  d~l/n (ulK1 +u3 

(102) 
-- g2 /̂ . \ l y__~W 11]n[C(W)]i/n(U1.LxIic._ll,• 

d \ 7 1  

where again C(w) is the salt concentrat ion and  ?~ the activity coefficient in 
the aqueous phase. 

Eq. (102) shows tha t  the conductance-concentrat ion relat ion is linear or 

nearly linear for  n equal to or dose  to 1. Eq. (102) also shows tha t  the 
part ial  cation conductance (F2/d)(?~/?) 11" [C(w)]ll"ul K~I ~ and the partial  

an ion  conductance (F21d) (7~/7) 1/, [C(w)] 11, ua K~ I" are independent  of each 
other,  in contrast  to the result for  a thick membrane  [Eq. (46), p. 306]. 

Finally,  cation permeabilities are propor t ional  to u~K~/~, whether deter- 

mined by biionic potentials [Eq. (99)], di lution potentials [Eq. (99)], or 

conductances [Eq. (102)]. Thus, these three types of measurements  yield the 
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same set of permeability ratios, in contrast to the result for a thick mem 
brane (p. 306). 

Comparison of  Theory with Experiments on Nystatin-Treated Membrane~ 
Thin lipid membranes treated with the antibiotics nystatin and amphoteri 
cin B undergo a large increase in conductance, principally to anions (Fin 
kelstein & Cass, 1968; Cass, Finkelstein & Krespi, 1970). Such membrane 
behave as if these antibiotics induce the formation of pores through whict 
ions, water, and small nonelectrolytes can permeate (Finkelstein & Cass 
1968; Andreoli, Dennis & Weigl, 1969; Holz & Finkelstein, 1970). Th~ 
hydroxyl groups of these antibiotics apparently serve as dipolar sites pro 
ducing anion selectivity. Thus, nystatin-treated membranes probably ex 
emplify thin membranes with fixed neutral sites, and the experimenta 
results of Cass et al. (1970) may therefore be summarized for comparisot 
with model 3. 

(a) The current-voltage relation in symmetrical NaC1 solutions is ap. 
proximately linear (Cass et al., 1970, Fig. 5 and p. 108), as predicted b3 
Eq. (101). 

(b) As predicted by Eq. (100) for an anion-selective membrane, th~ 
current-voltage relation in asymmetrical NaC1 solutions is nonlinear, th~ 
conductance being lower for currents tending to make the concentrater 
solution positive. The experimental curves (Cass etal. ,  1970, Fig. 5) ar~ 
quite similar to the theoretical ones displayed in Fig. 7 of the present paper 

(c) Conductance in symmetrical NaC1 solutions increases approximate b 
linearly as the 1.4 th power of the salt concentration (Cass et al., Fig. 3)~ 
which could be interpreted to mean that n is 1/1.4 =0.7 [Eq. (102)]. 

(d) At first sight, the biionic potentials and conductance measurements, 
of Cass et al. (1970) suggest a considerably greater permeability difference 
between chloride and isethionate than do their dilution potential measure- 
ments, contrary to prediction. However, the measured potential differences 
include junction potentials, correction for which would increase the per- 
meability ratio based on dilution potentials, and estimates of these junction 
potentials indicate that they could be large enough to remove the apparent 
discrepancy 4. 

4 Cass et al. (1970) used saturated KC1 bridges to record potential differences and 
neglected junction potentials. The signs of the expected junction potentials are such 
that correction for them would increase the dilution potential slope for NaC1 (ucl > uN~) 
but decrease the slope for Na isethionate (uN~ > ulsethion, te) and increase the NaC1-Na 
isethionate biionic potential (Ucl > Uisethionate). From a modified Henderson equation, 
we estimate that these junction potentials are somewhere between 2-3 mV and 11-12 mV, 
depending on the exact history of the KC1 bridges (Barry & Diamond, 1970, pp. 97-101). 
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(e) At salt concentrations above 0.1 ~, the conductance-concentration 
relation (Cass et al., 1970, Fig. 3) and the dilution-potential:concentration- 
gradient relation (Cass et al., Fig. 4) begin to deviate from linearity, an 
effect that may be due either to buildup of significant space charge (see 
p. 319, and Neumcke & L~iuger, 1970) or to effects of surface charge 
(McLaughlin, Szabo, Eisenman & Ciani, 1970b). 

M o d e l  4 .  Thin M e m b r a n e  with Shunt  

This model is the same as model 3 (thin membrane without shunt), 
except that, in parallel with and insulated from the thin membrane con- 
taining fixed neutral sites, is a shunt in which ion mobilities (symbolized 
by el, v2, and v3) stand in the same ratios as in free solution. As in model 2, 
the effective area, the activity coefficient, and ion mobilities are symbolized 
by pv, ?~, and ui in the neutral-site channel and by Ps, ?s, and v~ in the shunt. 

The excess cation flux over anion flux in the shunt, J * - J *  + aT*- J*, 
has been shown previously to be 

j . =  paRT [ a ' - a " ~  
r,d 

\ ' n - z ]  

. . . . . .  [ I [~(vla  1 +v2a2)-(vlal+v2aa) ] In ' a "  ' 

4 a " - a '  v31n ( ~ )  / 

where it is assumed that al +a2 =a3 =a. 

The excess cation flux over anion flux in the neutral-site channel is 
obtained from Eq. (98), by multiplying by pv/F and substituting in 4, = 
E F I n R T  [gq. (23)]: 

EF p~ 
J= dyl/"(4.-1 ) ([u*(Klal)l/"+uz(K2al)~/"+u3(K3a'3')l/"] (103) 

- 4. [ul (K1 ai') 1/" + u2 (K2 ai') ~/" + u3 (K3 a;)l/"]} �9 

Adding Eqs. (50) and (103) and multiplying by F gives the total current 
I = F ( J + J * ) :  

I = E p~ F a {[ui (K~ a'l) i/" + u 2 (K 2 al) 1/" + u 3 (K a a'3') i/"] a;,Y"(4.-1) 
_~ . [u l  (K i a,a,)a/. +uz(K2 a,z,)l/.+u3(K3 a;)a/,,]} -~ E p~F 2 2~(a'-a") 

dy~/" ln(~a"/a') (104) 

a"/o')_l . . . . . .  "( �9 [ [  (4 a " -  a') J [~(vi  al +v2 a z ) - ( v l  ax +v2 a2)] -v3 ln(a"/~ a') 
J 
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where 2~ =- ps ?~/"/pv 7, (561 

is a measure of the area of the shunt relative to the area of the neutral-sit( 
channel. 

Case 1. Conductance and the Current-Voltage Relation in Single-Sal, 
Solutions. If there is only a single salt, then a . . . .  2 =a2 =0 ,  a~ =a'3 =a,- ' al" = 

#t i a t t  ' as and Eq. (104) simplifies to: 

{.,(a')"-">i" [ [a" ]1"" 1 I = - 2 ~ V s a '  E ~  ~ . 1 - i .  " 1 -~"\ -a-r - /  J 

i a "  \ (v' +1] t -i ) 
\ vs i B3(a') O-") i "  [( a " t l i "  ~,,] 

-4 1 - r [ \ - ~T  ] jr 
l a t 

l n - -  a r 

(lOS; 

\v  3 ! \ a '  
where 

t'2s=pvFZ/dTa~/", (106) 

B~ -=_ ua K{l"/2s vs, (107) 

B 3 =- u s K~/"/2, v 3 . (108) 

Since the factor multiplying E on the right-hand side of Eq. (105) contains 
terms in E(~,), the current-voltage relation in asymmetrical solutions is 
nonlinear. An example of a calculated curve will be illustrated in paper III, 
Fig. 11. 

In symmetrical solutions (a' =a"-=a) ,  however, Eq. (105) reduces, after 
substitution of Eqs. (107) and (108), to:  

I =  -O~aE{[ul (K1)a/n+u3(Ks)  1~hI a(1-n)/n+X~(vl +vs) } . (109) 

The current-voltage relation is now linear, and conductance ( - I / E )  varies 
approximately linearly with concentration if n is close to 1. In Eq. (109), 
the terms u~(Ki)  ~/" and us(K3) a/n have the significance of relative cation 
and anion permeabilities, respectively, in the neutral-site channel, whereas 
2~vl and 2~Vs have a corresponding significance in the shunt channel. 

Case 2. Dilution Potentials. When I = 0 ,  Eq. (105) reduces to: 

Ul K~i"(a') 1/" S, us K~/" (a') a/" B, \ v3 / 
2s vs 2s vs In (a"/a') (110) 

- EoRTF ( v 4 - 1 ) ( a " - a ' )  
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where 

and 

1 -~.(a"/a') 1/" 
S . -  t - r  (111) 

B=_ (a"/a')l/"-~. 
1 - r (112) 

Case 3. General Expression for the Potential at Zero Current, Eo. Setting 
I = 0  in Eq. (104), multiplying through by (r and rearranging 
gives: 

v2 Klz/" 2, v3 { ~,-1'~ [ a"-a'~\ [ . ] ,  1 
UlK~/n-nutK~/n k l-~n ] (---a-~-| [(a2)l/n_~n(a~,)l/n ] \ lo-z l 

/ [ (  ( / v ta ;+  vza'2' _ vl a'l + vl a'z In 
.~. \ Va v3 / r V3a, v3 .ln~hTa"! (113) 

[ l . '  al/" x t ' . " r  U3 K1/n 
~"v -~.~"1, j -  ul KI/. [(a'a')x/"-~.(a'a) 1/"] 

(a'2)t/"-~.(a'2') 1/" 

u2K~/"/ulKl/" has the significance of the cation permeability ratio in the 
neutral-site channel. 

Case 3a. Biionic Potential. If a~ =a~' =0, a~ =a~' =a, and n = 1, Eq. (113) 
simplifies, remembering that In ~ = EF/RT= n In ~,, to: 

(u2 K2 + 2s v2) + (u3 K3 + 2s v3) Eo = - R T  In 
F (ulKl+2sVl)+(u3K3+%sV3) 

(114) 

As in Eq. (109), each term u,Ki in the logarithm of Eq. (114) has the signifi- 
cance of a permeability coefficient for the i th ion in the neutral-site channel, 
whereas 2sv, has a corresponding significance in the shunt channel. 

Discussion: H o w  to Recognize a Membrane with Fixed Neutral  Sites 

Given a biological membrane or model membrane of unknown structure, 
how can one most easily decide from black-box measurements alone if 
permeation is occurring via fixed neutral sites ? 

Neutral vs. Charged Sites. The distinguishing characteristic of neutral- 
site membranes generally, whether thick or thin, and whether with fixed or 
23 ft. M e m b r a n e  Bio l .  4 
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mobile sites, is a nearly linear conductance-concentration relation in sym 
metrical salt solutions 5. In contrast, the conductance of an ion exchange 
is virtually independent of concentration until the bathing-solution sal 
concentration approaches the concentration of the sites themselves. Hov0 

ever, this distinction between the behavior of neutral sites and ion exchanger 
may break down in membranes thinner than the Debye length, where th 

conductance-concentration relation may also tend towards linearity for a~ 

ion-exchanger. 

Thick  vs. Thin M e m b r a n e s .  Three methods can be suggested for distin 
guishing a thick membrane from a thin membrane with fixed neutral sites 
(1) The current-voltage relation in asymmetrical solutions of a single sal 
is linear for a thick membrane [Eq. (45)] and nonlinear for a thin mem 
brane [Eq. (100)]. (2) The partial conductances of cation and of anion ar, 

independent of each other in a thin membrane [Eq. (102)] and mutuall'. 
dependent in a thick membrane [Eq. (46)]. Thus, if the anion flux in sym 
metrical solutions is measured by radioactive tracers, the flux should b, 
the same whatever cation is used if the membrane is thin, but not if it i 

thick (provided that there is little or no exchange diffusion). (3) Measure 
ments of conductance, dilution potentials, and biionic potentials shouk 
yield the same set of permeability ratios among ions of like sign if the mem 
brane is thin, but should yield three different sets if the membrane is thick 
This test has to be qualified by the statement that if a thick membrane has 
shunt and has zero anion mobility in the neutral-site channel (as appear~ 
to be true for the gallbladder: see paper IV), then nearly the same catioI 

permeability ratios should be obtained from conductances and dilutioi 
potentials, and possibly from biionic potentials. 

Mobi l e  vs. F i x e d  Ne u t ra l  Sites.  If a membrane is thick and contain: 
neutral sites, then measurements of conductance, dilution potentials, an( 
biionic potentials will yield the same set of permeability ratios if the site: 
are mobile, different sets if the sites are fixed. If a membrane is thin an( 
contains neutral sites, it may prove difficult to decide whether these site: 
are mobile (e. g., similar to the carriers monactin and valinomycin) or fixed 
since most black-box properties would be the same in either case. Om 
possible clue is that the current-voltage relation for mobile sites become: 

5 Strictly speaking, G varies as C n, where n need not equal 1 ; and the relation for 
thin membrane becomes sublinear at concentrations sufficiently high that the spac~ 
charge is no longer negligible. Effects of surface charge (Szabo et al., 1969; McLaughliI 
et aL, 1970b) may obscure the linearity if the membrane is thin, but this complicatioi 
can be avoided by keeping ionic strength constant with an impermeant salt. 
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supralinear above abou t  40-60 mV (Szabo et al., 1969, Fig. 1), whereas the 

relation is approximate ly  linear for  fixed sites (Cass et aL, 1970, p. 108), 

bu t  the linearity in the latter case has apparent ly  no t  been tested beyond  

75 mV. 

It is a pleasure to acknowledge our debt to Drs. G. Eisenman, S. McLaughlin, 
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